

PRODUCT CONFORMITY CERTIFICATE

This is to certify that the

AR500 Open Path Monitor with ER120

Manufactured by:

Opsis AB

PO Box 244 5-244 02 Furulund Sweden

has been assessed by CSA Group and for the conditions stated on this certificate complies with:

MCERTS Performance Standards for Continuous Ambient Air Quality Monitoring Systems, Version 10 dated June 2016 and

Open Path Ambient Air Quality Monitoring Systems using Differential Optical Absorption Spectrometry

(DOAS) and FTIR Spectroscopy Version 3, August 2017

Certification ranges:

 $\begin{array}{ccc} NO_2 & 400 \mu g/m^3 \\ SO_2 & 700 \mu g/m^3 \\ O_3 & 360 \mu g/m^3 \end{array}$

Project No.: 80074511
Certificate No: Sira MC 160295/01
Initial Certification: 14 June 2016
This Certificate issued: 21 June 2021

Renewal Date: 21 June 2021 21 June 2021 22 June 2021 v.v. V

Andrew Young

Environmental Team Manager

MCERTS is operated on behalf of the Environment Agency by

CSA Group Testing UK Ltd

Unit 6, Hawarden Industrial Park Hawarden, Deeside, CH5 3US Tel: +44 (0)1244 670 900

The MCERTS certificate consists of this document in its entirety.
For conditions of use, please consider all the information within.
This certificate may only be reproduced in its entirety and without change
To authenticate the validity of this certificate please visit www.csagroupuk.org/mcerts

Certificate Contents

Approved Site Application	2
Basis of Certification	
Product Certified	
Certified Performance	
Description	
General Notes	

Approved Site Application

Any potential user should ensure, in consultation with the manufacturer, that the monitoring system is suitable for the intended application. For general guidance on monitoring techniques refer to the Environment Agency Monitoring Technical Guidance Notes available at www.mcerts.net

On the basis of these tests this certificate is valid when the instrument is used for urban air quality monitoring and similar applications.

Basis of Certification

This certification is based on the following Test Report(s) and on Sira's assessment and ongoing surveillance of the product and the manufacturing process:

TÜV Rhineland Cologne report: 936/21211350/B dated 7th October 2011

The testing for the Opsis AB AR500 Open Path Monitor with ER120 was conducted in line with EN 14211, EN 14212 and EN 14625. The analyser is not based on an EN standard method and therefore the procedure described in Figure 2 of the MCERTS Performance Standards for Continuous Ambient Air Quality Monitoring Systems (which refers to the EC guide Demonstration of Equivalence of Ambient Air Monitoring Methods) has been applied.

Product Certified

The AR500 measuring system consists of the following parts:

- AR500 analyser
- Combined Emitter Receiver Unit ER120

This certificate applies to all instruments fitted with software version 7.21 (serial number 1329 onwards).

Certified Performance

The instrument was evaluated for use under the following conditions:

Ambient Temperature Range: +5°C to +40°C

Instrument IP rating: Analyser IP20 Sender/receiver unit IP65

Note: If the instrument is supplied with an enclosure, then the ambient temperature shall be monitored inside the enclosure to ensure that it stays within the above ambient temperature range.

Results are expressed as error % of the measured value, unless otherwise stated.

Test			sed as % ed value	of the	Other results	MCERTS specification
	<0.5	<1	<2	<5		
Response time						
NO_2					120s	<180s
SO ₂					120s	<180s
O ₃					120s	<180s
Repeatability standard deviation at zero point						
NO_2					<0.1 nmol/mol	<1.0 nmol/mol
SO ₂					<0.1 nmol/mol	<1.0 nmol/mol
O ₃					<0.2 nmol/mol	<1.0 nmol/mol
Repeatability standard deviation at reference point						
NO_2					<2.0 nmol/mol	<3.0 nmol/mol
SO ₂					<0.1 nmol/mol	<3.0 nmol/mol
O ₃					<0.6nmol/mol	<3.0 nmol/mol
Residual lack-of-fit at zero						
NO_2					<-3.79 nmol/mol	<5.0 nmol/mol
SO ₂					<-0.64 nmol/mol	<5.0 nmol/mol
O_3					<-0.41 nmol/mol	<5.0 nmol/mol
Lack-of-fit						
NO_2		0.8				<4% of measured value
SO_2			1.6			<4% of measured value
O_3	0.4					<4% of measured value

Test	Resul	ts expres measur	sed as % ed value	of the	Other results	MCERTS specification
	<0.5	<1	<2	<5		
Short term drift at zero level (12hrs)						
NO ₂					<0.3 nmol/mol over 12 h	<2.0 nmol/mol over 12 h
SO ₂					<0.9 nmol/mol over 12 h	<2.0 nmol/mol over 12 h
O ₃					<-0.2 nmol/mol over 12 h	<2.0 nmol/mol over 12 h
Short term drift at span level (12hrs)						
NO ₂					<0.9 nmol/mol over 12 h	<6.0 nmol/mol over 12 h
SO ₂					<-0.5 nmol/mol over 12 h	<6.0 nmol/mol over 12 h
O ₃					<1.9 nmol/mol over 12 h	<6.0 nmol/mol over 12 h
Sensitivity coefficient to surrounding air temperature at zero.						
NO ₂					0.02 nmol/mol/K	<3.0 nmol/mol/K
SO ₂					-0.02 nmol/mol/K	<1.0 nmol/mol/K
O ₃					0.02 nmol/mol/K	<1.0 nmol/mol/K
Sensitivity coefficient to surrounding air temperature at span.						
NO_2					0.05 nmol/mol/K	<3.0 nmol/mol/K
SO ₂					-0.06 nmol/mol/K	<1.0 nmol/mol/K
O ₃					0.15 nmol/mol/K	<1.0 nmol/mol/K
Sensitivity coefficient to sample gas temperature.						
NO ₂					-0.03 nmol/mol/K	<3.0 nmol/mol/K
SO ₂					0.02 nmol/mol/K	<1.0 nmol/mol/K
O ₃					0.01 nmol/mol/K	<1.0 nmol/mol/K

Test		Results expressed as % of the			6 of the	Other results	MCERTS
		<0.5	measured value <0.5 <1 <2 <5		-	specification	
Dependence on supply	y voltage						
NO_2						<0.07 nmol/mol/V	<0.3 nmol/mol/V
SO ₂						<0.01 nmol/mol/V	<0.3 nmol/mol/V
O ₃						<0.01 nmol/mol/V	<0.3 nmol/mol/V
Single gas interference	e						
NO_2							
	CO ₂					2.6 nmol/mol	<5.0 nmol/mol
	NH ₃					2.3 nmol/mol	<5.0 nmol/mol
	O ₃					2.2 nmol/mol	<2.0 nmol/mol
							Note 1
SO_2							
	H ₂ S					0.5 nmol/mol	<5.0 nmol/mol
	NH ₃					0.4 nmol/mol	<5.0 nmol/mol
	NO					-0.6 nmol/mol	<5.0 nmol/mol
	NO ₂					0.4 nmol/mol	<5.0 nmol/mol
	m-Xylene					1.4 nmol/mol	<10.0 nmol/mol
O ₃							
	m-Xylene					2.6 nmol/mol	<5.0 nmol/mol
	toluene					2.2 nmol/mol	<5.0 nmol/mol
Averaging effect							
NO_2			-0.6				<7%
SO ₂		-0.1					<7%
O ₃			-0.9				<7%
Total expanded uncert	ainty						
NO_2						6.52	<15%
SO ₂						6.23	<15%
O ₃						8.01	<15%
						t	

Test	Results expressed as % of the measured value			6 of the	Other results	MCERTS specification
	<0.5	<1	<2	<5		
Period of unattended operation (Maintenance interval)						
All gases					4 weeks	>2 weeks
Zero drift (over maintenance interval)						
NO_2					1.62 nmol/mol	<5 nmol/mol
SO_2					-0.92 nmol/mol	<5 nmol/mol
O_3					-1.84 nmol/mol	<5 nmol/mol
Span drift (over maintenance interval)						
NO_2					0.50	<5% of maximum
SO ₂					-2.07	certification range
O_3					2.90	
Field reproducibility						
NO ₂					4.72	<5% of the average over
SO ₂					4.83	three months period
O ₃					2.41	
Availability (data capture)						
All gases					96.7%	>90%

Description

The system is an open path ambient air gas measurement system that uses an AR500 (UV) analyser and transmitter and receiver. The AR500 analyser is based upon UV absorption techniques for measuring SO₂, NO₂ and O₃.

The transmitter and receiver units are mounted opposite each other typically 200-800 metres apart. The receiver is connected to the control unit by a fibre optic cable.

The AR500 analyser system can measure other gases but these are not included under the certification, please contact the manufacturer for details.

The ER110 (EM110 emitter and RE110 receiver) can be used on path up to approximately 500 metres and the ER150 (EM150 emitter and RE150 receiver) up to approximately 1000 metres. The difference is the diameter of the two mirror options, the ER110 mirror is 100mm and the ER150 mirror is 150mm. The emitter contains a xenon lamp and a mirror.

General Notes

- This certificate is based upon the equipment tested. The Manufacturer is responsible for ensuring that on-going production complies with the standard(s) and performance criteria defined in this certificate. The manufacturer is required to maintain an approved quality management system controlling the manufacture of the certified product. Both the product and the quality management system shall be subject to regular surveillance according to 'Regulations Applicable to the Holders of CSA Group Testing UK Ltd Certificates'.
- 2. The design of the product certified is defined in the CSA Group Design Schedule V00 for certificate No. Sira MC160295/00.
- 3. If a certified product is found not to comply, CSA Group should be notified immediately at the address shown on this certificate.
- 4. The certification marks that can be applied to the product or used in publicity material are defined in 'Regulations Applicable to the Holders of CSA Group Testing UK Ltd Certificates'.
- 5. This document remains the property of CSA Group and shall be returned when requested by CSA Group.